La ciencia avanza cada vez más, ayer se avisaba de grandes avances en una vacuna contra el cáncer de mama. Hoy el turno le ha llegado al párkinson y nuevas posibilidades de tratamiento. Esta enfermedad -la segunda más común de las patologías neurodegenerativas tras el alzhéimer- afecta a más de 160.000 españoles (10.000 nuevos casos cada año) y a siete millones en el mundo, según la Federación Española de Párkinson.
Comienzan las ensayos de la primera vacuna contra el cáncer de mama
Leer más
Patricia González-Rodríguez, científica de Arcos de la Frontera (Cádiz) y formada en la Universidad de Sevilla, ha continuado en la Universidad Northwestern de Chicago la carrera que inició en el Instituto de Biomedicina de Sevilla (IBiS). Este miércoles encabeza en Nature una de esas investigaciones fundamentales. El trabajo demuestra cómo los defectos en el complejo mitocondrial 1 del cerebro, necesario para la supervivencia de las neuronas que producen dopamina y cuya ausencia o disfunción produce la destrucción de estas, generan una lenta pero continua progresión del párkinson. El hallazgo identifica además dianas terapéuticas para frenar e incluso revertir la enfermedad.
José López Barneo, catedrático de Fisiología de la Facultad de Medicina de Sevilla y también investigador del IBiS, es coautor de la investigación y explica cómo el párkinson se genera por la “muerte de muchas neuronas, pero, en especial, las más importantes, las de la sustancia gris del cerebro que generan dopamina”, un neurotransmisor fundamental para la función motora del organismo.
Las consecuencias de esta muerte neuronal se traducen en los temblores y la rigidez que evidencian los primeros síntomas del párkinson, “el síndrome motor característico de la enfermedad”.
La científica andaluza añade que “la ausencia de un modelo adecuado para probar esta hipótesis ha generado confusión en el campo del párkinson, sin saber si los defectos del complejo mitocondrial 1 eran causa o consecuencia de la enfermedad”. La investigación encabezada por Rodríguez-González lo demuestra por primera vez e identifica que la disfunción en esta zona del cerebro es primero.
Este es uno de los hallazgos más relevantes de esta investigación. El estudio, ante la evidente limitación para realizarla sobre humanos, ha sido posible gracias a la utilización de un modelo murino (ratón) al que se le ha eliminado el gen clave para la formación del complejo mitocondrial 1, el Ndufs2. Se ha hecho de forma selectiva para analizar las consecuencias de su supresión en la sustancia negra. Su ausencia ha desencadenado un párkinson progresivo de similares características al que se genera en una persona que sufre una disfunción en el complejo.
Según López Barneo, “este modelo muestra, por primera vez, que el complejo 1 es absolutamente necesario para la supervivencia de esas neuronas y que su ausencia produce su destrucción progresiva, no de forma brusca, sino durante varias semanas o meses. Es muy parecido al curso de la enfermedad que se da en humanos”. González-Rodríguez añade: “Hasta la fecha, es el primer modelo animal que se conoce que mimetiza el párkinson en las personas”.
La científica andaluza aclara que la patología afecta primero, en las neuronas que producen dopamina, al axón, la estructura alargada y delgada que transmite el impulso electroquímico a otra célula nerviosa. Posteriormente, alteran el soma, el cuerpo celular de forma esférica que contiene el núcleo. Y ambas afectaciones son necesarias. Según detalla López Barneo, “las neuronas no mueren cuando este complejo falla, sino que comienzan a funcionar mal”: “Siguen vivas por mecanismos adaptativos, pero con cambios en su función que dan lugar a una serie de alteraciones que aparecen con el tiempo”.
Esta latencia abre un campo terapéutico muy grande porque permite nuevos abordajes, ya que la pérdida de dopamina en el núcleo estriado del cerebro produce unos síntomas iniciales que no se manifiestan con las alteraciones motoras características del párkinson. Según López Barneo, “las neuronas son potencialmente rescatables antes de que acaben muriendo y ahí hay una ventana a la terapia muy amplia. Podría ser reversible en algún momento”.
En este sentido, la autora principal de la investigación precisa que “las neuronas dopaminérgicas afectadas por la enfermedad de párkinson pierden algunas de sus propiedades y cambian su metabolismo, pero durante un tiempo largo no se mueren, es decir, podrían reactivarse (recuperarse), al contrario de lo que se pensaba hasta ahora”.
Actualmente se utiliza como tratamiento la levodopa, una molécula sustitutoria de la dopamina, y se ha observado una gran reversibilidad de la enfermedad tanto en los modelos de ratón utilizados como en casos iniciales de la enfermedad en humanos. Pero la nueva investigación abre la vía a que no sea este el único camino, sino que amplía las posibilidades a otros mecanismos y compuestos para ralentizar la progresión de la enfermedad y revertir sus efectos.